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INTRODUCTION 

The work reported in this paper can be considered in three distinct phases. First, 

the previously initiated study of the model for particle - surface col1isions)proposed by 

Kinzer and Chambers'') was completed.'. This included the calculation and analysis o f  the 

frequency spectrum excited in the solid and the calculation of thermal accommodation co- 

efficients in the high-velocity limiting case .)Secondly, the equations of  motion for the 

problem of the collision of  a diatomic molecule with a crystal lattice in the one-dimen- 

sional approximation were solved and the high-velocity thermal accommodation co- 

efficients were calculated and compared wi th  the equivalent results for the monatomic 

collision problem. 

boundary value problems involving repetitive structures such as crystal lattices were 

i 

Finally, the mathematical techniques necessary for the treatment of 

aeveiopau uiiu uppileu t u  a vtli;F;lr of aI IvLIWIGJ I I Ib I~uI I Iy  
I I -- I  - - A  ---I:--I a- - . - . - . - ~ . r  r ~ - . , r ~ . . r , . r  :-*I ,:-mi, &ran ....-~--...., rl;monc;nnn -..-._.._! !ct- 

tices. ' 

PART I .  THE MONATOMIC COLLISION 

This study was initiated under Contract No. NAS8-2585 between the George C. 

Marshall Space Flight Center and the University o f  Alabama and preliminary results were 

reported in the form of  an interim technical report. In that report criticism of  prior work 

in the field was offered and justification for the model was presented in some detail. A 

summary of the results i s  given in section 1 .  A. 

Section I.A. Summary of Previous Results 

The model consists o f  a semi-infinite chain of  particles of mass m interacting 

harmonically with their individual nearest neighbors through an elastic parameter 

In addition, each particle i s  subject to a fixed harmonic interaction wi th.  k = m  w 

elastic parameter & =  4m w w and to a linear, velocity dependent force with para- 

meter 4m w K. These last two terms represent the restorative and dissipative properties 

o f  the crystal bulk in terms of  an essentially one dimensional model. 

1 

2 

2 -2 1 1 1 '  

1 1  

1 1  

I f  we let a be the equilibrium separation of each pair of particles and $.(t) be 
I ... , then 

TH 
the longitudinal displacement of the i particle from equilibrium i = 0, 1, 2, 

the equations of  motion become: 



n n  

... 
n = 0 ,  1, 2, 

(I.A. 1) 

The influence functions for this system of differential - difference equations can readily 

be found using the methods of PART 111 of this report. They are given by: 

(I.A. 2) 
wherein T i s  the reduced time, i .e.f T = 2 w t , and J (x) i s  the Bessel Function of  

order n. 
1 n 

Now consider an incident gas particle of mass m interacting harmonically 
2 0 

with the end (n = 0) particle of the lattice with an elastic parameter k = m o . 
Let the equilibrium separation of m and m be a and assume that the interaction 

ceases whenever the relative displacement of  m and ml exceeds a a  where a 

i s  related to the binding energy e by 

0 0 0  

0 1 0' 

0 o f  

2 2 2  
a a .  

1 
c = - m u  2 0 0  0 

If we le t  f (t) be the displacement of the incident particle from equilibrium, we can 

define the following: 
m 

ratio of elastic parameters - - - - 8 = kJkl 

relative displacement - - - - - - u = 4  - 5  
0 

and the equations of motion of the system become: 
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. .. 
n = 0, 1, 2, (I.A. 3) 

Assuming that the crystal i s  initially cold, the init ial conditions are: 

... 
4 (0) = $,(o) = o , n = 0, I, 2, 

n 

Z(0) = 2 ~ ,  =ao  Y (I.A. 4) 
0 ,  

( ( 0 )  = - a  a 

Proceeding as before, these equations can be solved by the methods of PART 

111 and the relative displacement U(T) can be represented by a series of the influence 

functions for the lattice without the incident particle, 

cn 

4.) = 1 Cnlq.)  (I.A. 5) 

are functions of p and p and can be determined recursively for any 
n = O  

where the C 
n 

particular case. 

The conditions for trapping of the incident particle on the surface can be ob- 

tained by assuming that the interaction begins with u(0) = aa 

T = T 

fined such that % = 

when u( T ) = a ao. If K 
p , the effect of the parameters on the possibility of  trapping may be studied. This 

feature of  the model was thoroughly investigated i n  the previously mentioned report. 

Briefly, for a typical curve, the curve.was roughly bell-shaped, with a more or less 

sharply peaked maximum indicating a resonance for particular choices of the parameters 

p , p , K , and G, and i n  general the efficiency of trapping was much higher than 

for models previously considered (2,3,4,5) . The effect of  an increase in  0 was to mag- 

and terminates for 
0 

> 0 when u(T,) = a a . A critical init ial kinetic energy K 

where y 

can be de- 
C 

assumes a value such that b ( T ) = 0 

i s  plotted versus z = -$$ , for fixed p and variable 
C 

4t.l O 2  
e 

-B- yc c 1  C 

C C 2 
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n i b  the curve and displace the maximum to higher values of z , and the effect of  in- 

creasing K was to reduce the height and increase the width o f  the resonant peak. 

An expression for the vibrational frequency spectrum in the solid can be obtained 

by considering the energy flux through the lattice. The energy per unit time passing the 
2 .  

f i rs t  particle (n =O) in the lattice i s  given by i(t) = m w 

and 6 
u $o, and by resolving u 

0 0  

into their Fourier components and considering the total flux of energy, 

00 00 

0 -00 
J = J i ( t)dt = J f (w )dw,  

we can identify f (w)  as the frequency spectrum. In  particular, we find 

2, 

- tu2+ K :wl;~ J Po i ( p  0 2 +  i )1/2+p o] [-i.j 2 r  
8BtJ 

* " 1  

complex f(o) = { - 2 p w 2  PPo({ Po2 + 1}  l 1 2 + P ) + p + p P (  0 3 o { 0 2  P + 1  >'I2 + PO) x conjugate} 

+ G2 - K2) P 2 = ( K + i o )  2 
0 

(I.A. 6)  

2 2 2 2  
a a Y K =2m 

E 0 

Section I .  B. The Frequency Spectrum 

The developments i n  Section I .C. and Part 111 indicate that for realistic solids 

the dissipative parameter K i s  quite small. For this reason and for mathematical sim- 

plicity, we shall consider the frequency spectrum only in  the case K = 0. The expres- 

sion for f(w) becomes 

f (w)  = 

'pp2 [ 2 w.']E. - w  2 - 2 1  0 [ 1-(w 2 - -2  w )  ]'I2 eo + 4012 - 
1 10 

[p - d p w 2 1 2  [ . 2 - z i z ] + 4 p p  u2[p - 4 p w 2 ] [ b -  ;2 ]+4 ,  2 2  p w 4 

( I . B .  1) 
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we can write equation (I.B. 1) in the fon:  

- 
- 

2 
zw2 e w 2 + K  E w 2 _ _  T w f(w) 

m 

- 7 P  1 

2 

2 2 -2 1/2 w (u - w ) 

4 

- 
- 

2 
zw2 e w 2 + K  E w 2 _ _  

- 7 P  1 

2 

2 2 -2 1/2 w (u - w ) 

(I.B. 2) 

and in  this form the equation was programmed for the IBM - 7090 computer of the 

Marshall Space Flight Center. Curves were calculated for various values of the para- 

meters o, 

rc;nge 

- 
and z. It i s  interesting to note that i n  general w i s  confined to the w 2  

-2 -2 2 
w < w < l +  0 

which means that the lattice behaves as a band-pass filter, i.e., only those frequen- 

cies within this range are transmitted by the lattice without attenuation. Because of 

this behavior, values of w 

within, and above the rnnge of w . Because of the particular dependence of f (w)  on 

E and K,  , it was convenient to plot separately the terms proportional to these two 

quantities . 

- 
were selected which, for each choice of w , fell below, 2 

Figure 1. shows the dependence of the binding energy term on the parameter - 
0 .  In  each case z was held constant and a value of w was chosen which fel l  ap- 

proximately i n  the center of the allowed range of 0 .  Figure 2. indicates the depend- 

ence of  the kinetic energy term on ; . Again, i n  each case z was held constant and 

w was chosen in the middle of the allowed range of 0 .  It i s  clearly seen that the 

effect of increasing t i s  to reduce the total amount of energy transferred to the lat- 

tice, which i s  represented by the area under the curve, without drastically altering 

the relative distribution of  frequencies. This can be interpreted physically as a s t i f -  

fening of the lattice i n  terms of i t s  response to the collision of the incident particle. 

2 

2 

Figure 3. exhibits the dependence o f  the kinetic energy term on the parameter 

The binding energy term has qualitatively the same behavior and, since the kinetic 2' 
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energy term wi l l  be the dominant one in an enelgetic collision or the weak binding case, 

we confine our attention to the kinetic energy term. For w 2  in  the center of the allowed 

frequency band the distribution i s  roughly symmetric. When w 2  i s  below the lowest al- 

lowed frequency band the distribution i s  roughly symmetric. When w 2  i s  below the lowest 

allowed frequency the distribution i s  modified by a shift to a relatively larger number of 

higher allowed frequencies, while i f  w 

tribution i s  shifted to a relatively larger number of  the lower allowed frequencies. The 

respective shifts are accompanied by a reduction in the area under the curve, i.e., by a 

reduced transfer of energy from the incident particle to the lattice. This i s  the same be- 

havior which i s  more clearly exhibited by a study of the trapping curves referred to i n  

Section I.A. It i s  apparent that 

of the incident gas particle match those of the solid. 

i s  above the highest allowed frequency the dis- 

i s  a measure of the degree to which the properties O 2  

Figure 4. illustrates the dependence of the kinetic energy term on the parameter 

z. An increase in z generally results i n  a decrease in the area under the curve, and 

hence the energy transferred. That this i s  physically reasonable can be seen from the fact 

that, to a first approximation, the effective duration of  the collision i s  given by - 
w z '  

thus the time available for the transfer of energy i s  less for large z. This effect i s  also 

apparent from a study of  the trapping curves. 

1 

0 

It i s  difficult to estimate just how good an approximation this frequency spectrum 

i s  to the actual frequency spectrum of a true three dimensional lattice, however, it i s  

felt that the qualitative features should be similar. Verification must await the complete 

analysis of  the three dimensional models. 

Section I .C. Accommodation Coefficients 

The effect of the stiffness and dissipation parameters on the energy transfer to the 

lattice from the incident gas particle can also be evaluated qualitatively by a study of  

the accommodation coefficient which i s  defined by the energy ratio 

(I.C. 1) 
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Where K. i s  the kinetic energy of the gas particle before the collision and K i s  the 

kinetic energy after the collision. We have assumed the init ial temperature of the sur- 
I f 

I 
I 

face to be sufficiently small so as to be negligible with respect to the effective tempera- 
~ 

ture of  the gas particle. 

Since 

2 

- 1 -  0.c. = 1 - - - Kf 
K. 

I (I.C. 2) 

where T 

of the gas particle as a function of time can be found by integrating the equation 

i s  the reduced time corresponding to the end of the collision, the velocity 
C 

with respect to time. We have 

0 2 ' T  

s u(s) ds E'@) -k - 0 -- ' - E'(.) = 
0 

d 7  2 
4 w 1  

Since 

(!.A. 3) 

2 
W 

- - -  0 -  and we can write 
2 P  

w 1  

u(T) = u(0) - df(T) -I- d(0) f ( 7 )  
d r  

We have 

df(S) + u'(0) f(s) ds 1 T E'@ 1 
. z 'o= '+  0 ds 
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Now by choosing a = 0 ,  we have u(0) = O  and l im i t  ourselves to the case of a 

purely repulsive potential. This also represents the high init ial velocity (temperature) 

case in  which the attractive part of the potential plays a negligible role. Because of 

the assumption of a cold surface 

and so we obtain 

Then the accommodation coefficient i s  given by 

(I.C. 4) 

T i n  this relation i s  the reduced time corresponding to the first zeta of the integral 
C 

for nonzero time. 

Referring to Figures 5. and 6 .  for p = 1 and p = 1/2, respectively, we 

see that the effect of increasing the stiffness parameter 

coefficient curve to largervalues of p , i .e. , the rigidity of  the crystal lattice bond- 

rotational motion reduces the transfer of  energy i n  the weak binding energy case. For 

p > 3, however, there i s  very l itt le effect observed. In Figures 7. and 8. we see the 

result of an increase in  the parameter K which governs the ability of the crystal to ex- 

tract energy from the primary chain. The "knee" of  the a.c. curve i s  not appreciably 

displaced but the height of  the curve i s  drastically reduced until one reaches the crit i- 

cal case 0 = 1 , K = 1 for which the motion of the lattice particles i s  exponentially 

damped. This effect implies that the end lattice particle becomes more difficult to be 

excited into violent motion by the colliding gas atom. A real lattice would therefore 

be likely to have an effective value of K such that K << 1. 

i s  to shift the accommodation 

Without a detailed evaluation, i t  i s  difficult to estimate the effect of the attrac- 

tive part of  the surface interaction but it i s  felt that, since the particle would spend 
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more time under the influence of the surface, the accommodation coefficient would be 

appropriately higher i n  a l l  cases. The effect of the attractive part of the surface inter- 

action has not been evaluated for this model because of the computational effort involved 

and also because the model i s  not as realistic as the true three-dimensional models cur- 

rently under investigation. 

-9- 



PART II . THE DIATOMIC COLLISION 

The purpose of this phase of the work was to investigate the effect on the behavior 

of the gas particle-solid surface system of the conversion of  collisional energy to what 

might be termed internal energy of the incident particle. The internal energy may take 

on several different forms. A monatomic molecule can be excited toa higher electronic 

state or even ionized. A diatomic molecule can go into a rotational state, a vibrational 

state, or a higher electronic state. I t  may also be dissociated or ionized. In  general it 

wi l l  assume some combination of any or al l  o f  these possibilities. 

As we wi l l  use classical mechanics to treat a purely one-dimensional model, the 

simplest possibility to consider wil l be that of a diatomic molecule composed of two iden- 

tical particles which can be excited in  a vibrational mode. While we are forced to 

ignore ihe more easiiy excited states such as rotationai motion, the quaiitative features 

should be similar. The essential point i s  that the incident particle can possess energy in 

some form other than translational energy associated with the center of mass of the particle. 

Section I I .  A. Solution of the Equations of Motion 

The model for the solid consists of a semi-infinite chain of particles of mass M 

interacting harmonically with their individual nearest neighbors through an elastic para- 

meter K = Mw where w i s  the 
m rn 

maximum frequency the lattice wi I I propagate. 

4 

I f  we let a be the equilibrium separation 

gitudinal displacement of the i particle 

the equations of motion become: 

TH 
of each pair of particles and CP .(t) be the lon- 

from equilibrium, i = 0, 1, 2, , then 
I ... 

(11. A. 1) 

The influence functions for this system of difkrential-difference equations can 

be readily found using the methods of  PART I l l ,  however, recognizing that this model 

i s  a special case of the model of PART I, we see that they are given by (I.A. 2) for 
- 
o = K = O :  

-10- 



which results in 

(1I.A. A) 

Now consider an incident diatomic gas molecule with masses M and M2 and 1 
bond elastic constant K1 interacting harmonically with the end (n =o) particle of the 

1 lattice with an interaction elastic parameter K Let the equilibrium separation of M 2' 
and M2 be a', the equilibrium separation of M and M be ao, and assume that the 

2 

2 
iiiieiactioii tieti~eeii :V: aiib !V: ceases wheiievei h e i r  ielaiive displacement eicceeds 

aa 

Figure 9. If we let 

masses M1 and M2, respectively, and define the following: 

where a is the range of interaction parameter. This system i s  illustrated in 
0,  

X ,(t) and 5 (t) be the displacements from equilibrium of the 2 

elastic parameter ratios - - - - - - - 9, =K1/K, B 2 = K 2 / K  

- 4 2  relative displacement - - - - - - - - u =  4 
0 

then the equations of motion which are given by 

(1I.A. 3) 



become 

(1I.A. 4) 

where we have used 

88 d2f .. 
f = -  , f =  w 2 f " .  -. f =  d2f 

2 m dt2 d7 

Assuming that the crystal i s  initially cold, the init ial conditions are: 

(1I.A. 5) 

As previously mentioned, we restrict ourselves to the case t~ 
= t~ = p . 

Taking the Laplace transform of the equations (I1 .A. 4) we obtain 

The last equation i s  a second order difference equation, i .e., 

-12- 
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- ... 4 n+2 - 2(1 + 2s2) 3 n+l + T n = o f  n = 0 , 1 , 2 ,  

and to solve this we take the laurent-Cauchy transform: 

n = O  
and obtain 

L - 2(1 + 2sL)z + 1 (1I.A. 7) 

If we set COSH 0 = 1 + 2s2 , SINH Q = 2 s G s 2  we can write 

L 
z - 2 z C O S H Q + l  

and on inversion we obtain I - - - - 
- 9 COSHQ - d COSHQ d 

0 + -  0 - e] 2 2SlNH Q "I 2 enQ - ["I 2SlNH 8 

(1I.A. 8) 

Boundedness of the solution for large n gives us the condition 

- - 
@ 1  - d [COSH Q - SlNH Q] = 0 

0 

or 
I 
I 

We now have four equations, namely ( I 1  .A. 9) and the first three equations of  

d and 4)1 . Solving these, 
- - - - 

1' r2 '  0 
(1I.A. 6) ,  to solve for the four unknowns Z 
we obtain 
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Now i f  

l 2  [ p  

then 

1 2 ( v z  - s) + 2s 

(1I.A. 11) 

(1I.A. 12) 

(1I.A. 13) 
n = O  

are given by equation (1I.A. 2). I f  we let x = [ G s 2  - s ] we 
' n  

where the 

can easily show that 

2 1 - x  
2x 

s =  

2 1 + x  
Y T S 2  = 2x 

Then we can write equation (I 

2 -  - u( S 

.A. 12) i n  the form 

00 

n ) = f(x) = 1 c x  
n 

n =  0 

and we have the straightforward task of determining the coefficients in a power series 

expansion of f(x) about the point x =Q. If we define P the coefficients c 

are functions of p ,  p 

B 
P n 

and p and can be determined either analytically or numerically 2' 
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for given values of these parameters. The latter technique was used i n  this case and the 

problem was programmed for the IBM 7090 computer of the Marshall Space Flight Center. 

Because of the inability of the simple one dimensional chain to represent a real 

crystal, i t  was felt that a thorough analysis of the data would be unfruitful. Two aspects 

were considered to be of interest; they were the trapping curves and the accommodation 

coefficients. Lack of t ime due to programming difficulties restricted the analysis to only 

one phase. As the accommodation was of more immediate interest this aspect of the be- 

havior of the system was chosen for investigation. 

Section II. B. Accommodation Coefficients 
~~ ~~ ~ ~ 

As i n  Section I .C. the accommodation coefficient i s  defined by the equation 

K. - Kf 

K. 
I 

a.c. = 
I (I.C. 1)  

In any experimental measurement based on molecular beam techniques and using mecha- 

nical velocity selectors, the internal energy of the gas particles wi l l  not plan an 

important role so we take the kinetic energies appearing in equation (I.C. 1) to be the 

translational kinetic energies of the gas molecule. Thus the accommodation coeffi- 

cient wi l l  be given by 

2 

(11.8. 1) 

where T i s  the reduced time corresponding to the end of the collision. 
C 

The translational velocity of  the gas molecule as a function of time can be found 

by integrating the sum of the first two of  equations (1I.A. 3) 

K2 K2 

M1 
i,W + i2(t) = - ((bo - E , )  = 5 u(t) (11.8. 2) 

with respect to time. We have 
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Again we can write 

so we have 

(1I.B. 3) 

8 l(fl) = 0 we l im i t  our discussion to the case 

of a purely repulsive interaction with an initially uncompressed molecule. This repre- 

sents the high init ial velocity case in which the attractive part o f  the binding potential 

plays a negligible role. Because of the cold surface assumption 

Now by choosing a = 0 and 

and so we obtain 

i . 1 +  F; P 2 q o )  f 

= - -7-qyFFq0 El(@) + f 2 ( O )  4'p) + F, (o)  J f(S) ds - E l +  42 - 

(1I.B. 4) 

We can further simplify our task without loss of generality by assuming Zip) = 0. In 

this case we have the accommodation coefficient given by 
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f 2 

(1I.B. 5) 

where T 

time. 

i s  the reduced time corresponding to the first zero of the integral for nonzero 
C 

1 1 
Referring to Figures 10. and 11. for p - and p = 7, respectively, we - 2  

p 

see that the effect of exciting the molecule into vibrational motion i s  to increase the 

accommodation coefficient for smal I values o f  

sion and to decrease the accommodation coefficient for larger values of p 
effect i s  more pronounced for lighter molecules and for molecules with weaker molecular 

bonds. Due to the tendency of the simple one dimensional chain to collapse, i.e., to 

over that of  the monatomic coll i- 

The 2 ’  

have Q peiiitaiieiit displaceiiieiit of the ~ h ~ i f i ,  the C U ~ L ’ ~ ;  ~ 8 ~ 8  not exteded t~ S Z C ! ! ~ :  

2 0 
values of  p since these values correspond to cases for which U(T) exceeds aa 

but for which the velocity of the molecule i s  positive , i.e., in the direction of the end 

of the chain. In such a case the molecule could collide again with the chain and this 

would not represent a physically realistic system. 

Inasmuch as the curves are compared with those for a monatomic molecule under 

identical circumstances, it i s  fe l t  that the effect of the excitation of the incident parti- 

cle into internal motion i s  adequately represented. However it i s  not felt that i t  would be 

worthwhile to pursue this particular model much further due to i t s  extreme complexity 

and because i t  only indicates qualitative trends. I f  the diatomic collision i s  of further 

interest a better model for the solid, such as that i n  PART I ,  should be used. 
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PART 111. THE MATHEMATICAL TECHNIQUES 
-~ 

This section of the report i s  concerned with the analysis of the differential- 

difference equations which occur in the description of physical systems of the type which 

appeared in  PARTS 1 .  and II. The most versatile formulation of such a system i s  in  terms 

of i t s  response to impulsive inputs. The response to an arbitrary forcing function can be 

synthesized by a Faltung integral, and any free wave solutions can be obtained easily 

from asymptotic expansions of the impulsive responses. Transform techniques are used 

throughout, and these techniques permit infinite, semi-infinite, and finite bounds on the 

lattice variables to be treated with equal facility. Applications are indicated with each 

system, but physical evaluation i s  reserved for treatment elsewhere. 

The basic transform used i s  the Laplace-Stieltjes transform. 

c+i 00 
sx 

f(s) ds (111. 1) e - J S 

1 
? god = 

c-i 00 

Where the Stieltjes integration i s  over the variable x. If 

then the transform reduces to the ordinary Laplace transform, i.e., 

c+i 00 
00 

sx 
e f(s) ds ( I l l .  2) -sx 1 

f(s) = J e $(x) dx 8 @(x) = 
c-i 00 0 

If 

dg(x) = e S C  @(x - e ) d [ x + r n - e ]  

where 0 < E < 1 , [ x J i s  the greatest integer in x, and m i s  an arbitrary integer, then 

the transform reduces to the Laurent-Cauchy transform, i.e., p =  e 
-s 
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Where C enclosed the singularities of f(p). Properties o f  the above transform are 

easily derivable from the definition. The derivation of several transform pairs i s  given 

in the appendix. 

Section 111 .A. The Sodium Chloride Lattice 

As a relatively simple example which wi l l  demonstrate the techniques used in  

problems with only one lattice variable, consider the one dimensional, infinite sodium 

chloride type crystal with harmonic nearest neighbor interactions, excited by a longi- 

tcdiRG! cr trCfis8.8erse imp!J!se at the center cf the er\t&ml W,"".. 

Let u (t), Vm(t), - 00 < m < a, denote the displacements of the particles of  
m 

from equilibrium. Let u be the displacement of the particle at the 
0 2 0' ml' masses m 

center of  the crystal, and k = m w 

neighbors. Since the crystal is excited from the center, we have the symmetry rela- 

tions V = V  u = u  m=0,1,  . The equations of motion are then 

be the harmonic interaction between the nearest 
0 

... 
-m-1 m' -m m' 

- 2u 3 m 0 0  u = k [ 2 V  0 
0 

I .. + v  - 2 u  m u  = k [ V .  n+ 1 
n n+l o n+l 

n = 0, 1, 2, ... u0(O) = 0 ;o(o). = I (1II.A. 1) 

- - dg where g - - dt 
- - m 

0 I f  we let T = 2ot be the reduced time, p = 7 be the mass ratio, un(s), Vn(s) 
1 

be the (tau) Laplace transforms of u (T), V (T), we have, on applying this transform to 
n n 
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the above equations 

1 I = -  
0 2 w  

- 2 
0 

(2s + 1); = v +21 
0 0 

- 
2(2s 2 + l)I;n+l = v 

2(2s 2 + p  ) v = p [ Vn+l +Vn]  

+ v 
n+l n 

n 

... (1II.A. 2) 
n = 0, 1, 2, 

- 
Now let F ( p , s), F, ( p, s) be the Laurent-Cauchy transforms of 6 (s), V (5). 

Applying this transform to the above equations, and using h e  shift theorem derived i n  

the appendix, we have, i n  matrix notation 

0 n n 

2 2 
Solving this system by Cramer's rule, and using the definition COSH a = 2(2s + W2S + p )- 1, 

0 IJ 
we have [ 

p(p - COSH ao) 

A 
0 1 
I 

PSI" a 

A I 41 (2? + ) 
0 - 

0 
SlNH a 

t ' 2  
: P  - COSH ao)  -[ (1 - COSH a )(2s + 1). + (1 + COSHa 

0 0 

0 
0 0 SlNH a 

(1II.A. 3) 

A = p 2 -  ~ ~ C O S H ~  + 1 
0 

I 

I 
I These equations can now be inverted by use of the transform pairs given in  the appendix. 

Doing this inversion, we have 

I 

I 
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2 41 (2s + IJ ) 

0 
SlNH na 

0 - - 
0 

p SlNH a 
u = . u  COSH na - 
n 0 0 

(1 - CQSH a )(2? + 1)G + (1 + COSHa 

0 
SlNH na 

0 0 

0 
SINH a V = (2s + 1); - 21 COSH na - - n [' 0 0 

0 1 
(1II.A. 4) 

In order to determine , we need another condition. - -  0 

of finite length, we could use the conditions on V u at the 

determine u . In our case we require that as n -KO , u and 
n' n 

0 n 

If the crystal had been 

end of  the crystal to - 
V be bounded in  abso- 

n 
lute value. Since Re(s) > 0 the only way that this i s  possible i s  for the coefficients of 

the positive exponents of the cosh a and sinh a terms in the above transforms to be zero. 

Using this conditions, we have finally for the Laplace transforms 
0 0 

41 (2sL + p )  
(r)" 

0 - 
u =  

0 
n p S l N H a  

-a r = COSHa - SlNHa = e o 
0 0 

(1II.A. 4) 

Using the relation 

COS n0 de lr 1 
0 J C O S H ~  -COW 1 [COSH a. - a 

0 0 0 
SINH a 

We can write the above transforms in  the following form: 

2 
41 (2s + IJ 1 

n I J =  
COS ne de 0 - 

J C Q S H ~  -COW u =  
0 0 
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[COS n0 + COS (n+ l)01 de 21 
v = -  

COSa -COS0 
0 

O s  
= o  n (1II.A. 5) 

Now 

- 1 - COS8 COSHa - C O S 0  = 2(2? + 1)(252 + I.’ 
CI 0 

1/2 
where 

W = - 1 { (1 +I . ’ )  + 7 / 7 + 2 1 . ’ c 0 s 0  + 1 ) )  1,2 2 - 

a Is0 
2 

a w l  - b  

2 
I 
I 

1 

- b  2 

2 2 2  2 2 
a ? + b  - - O W 2  

w , ( w 2  - w 1  (s + w 1  )(s + w 2  w2(w2 - (&I1 

~ 

Using these relations in  the above transforms, and then taking the inverse Laplace trans- 

form of the terms 
W 

I we have the following solutions 2 2 
s +  w 

2 
01 - I.‘/2 

SIN w 2 ~  - SIN W ~ T ]  d0 
w 1  

COS n0 
I ll 

u p )  = 7 O s 2  2 
0 w2 - w1 

A 
1 SIN W ~ T  - - 

w2 

COS n0 + COS(n + l)0 
2 2 

O2 - w 1  

Vn (4  = 

(1II.A. 6)  
Section I l l .  B. The Polyatomic Lattice 

As a more general example consider the one dimensional, semi-infinite polyatomic 

crystal with nearest neighbor interactions, excited by a longitudinal or transverse impulse 
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at the end of the crystal. Let us have a group of r different atoms and n different har- 

monic interactions which repeats itself to infinity. Let us introduce two terms, which 

from a physical point of  view represent three dimensional effects in this one dimensional 

problem. First, let each type of atom move in  a fixed harmonic potential. This fixed 

potential simulates the restorative effect of the crystal bulk, and prevents the collapse of 

the model. Second, let each type o f  atom move under the influence of a linear, velocity 

dependent force. This dissipative term simulates the flow of energy into the bulk of  the 

crysta I . 
I 

Let un (t), O< - -  I < n, O< - n< CD denote the displacement from equilibrium of the 
TH 

particle of mass 71 O< 1 < r i n  the n group. Clearly I i s  the index within the poly- - I - -  
L 

atomic group, and n i s  the index of the different groups. Let k = m w be the har- 

TH 
standing that the r + lST particle i s  the o 

I I I  
m r r n o c  . .  mn+arn*t;nn h e t w n m n  the j ~ f i a  the ! + lST p a ~ i ~ i e c  0 < I < r with the under- ,,,"*,,~ IlllrlU". I".. I-. .."_.. ...- - -  

particle of the next group. Let k and I 
K I 
for the ITH particle. The equations of motion are then 

be the fixed harmonic interaction and velocity dependent parameters, respectively 

m u  .. 0 = k ( u l - u o ) - k u  0 - K  b 0 - 
0 0  0 0  0 0 0  0 0  

(I1I.B. 1) 
..r - 0 r r- 1 r r - u n ) - F u  - K b r  

r n  r n  m r n  " - kr(Un+l - un) + kr-, (U" 

-*Q - Q+l Q Q-1 - u n ) - E Q u n  Q Q - K  b Q 
Q n  

- u  1 + kQ-l (Un 
"Q un - kQ (Un n 

l < Q < r - l ,  O < n < o o  
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Let F.( p ,s) , 0 < i < r be the double Laurent-Cauchy, Laplace transform of - -  I 
I 

un(t), 0 < i < r, 0 < n < 00.  Taking this transform of the above equations we have, in 

matrix notation 
- -  - 

F =  - 

r l op  -k P 0 .  O -k 

0 

0 

1 '  -k I 1  -k 
0 

1 0 -k 

0 

- Pkr 0 I 

0 

. I  -k 

O -k I 
r-1 r- 1 

r-1 r 

2 I I =mls + K s + k  I I + k  1-1 + 5 

k = k  -1 r 

This system of  equations may be solved by Cramer's rule. By elementary determi- 

nant manipulation, we may remove the p dependence from the determinant of the co- 

efficients, and write it as I 
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x =  

2(-)r+1kr 

I o  -k O . . .  

0 

0 : 

DET (& - = (-)r k 

2 Y - k  X 

2 
( P - 2p COSH a. + 1 )  

0 0 I. 
i l  -K 1 

1 '2 
-k 

0 

-k2 

0 

-k 
r-3 

-k 1 
r-1 r-1 

-k 
r- 1 

0 
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Y =  

-k 0 
0 0 

I 

-k 1 I1 

0 

0 

-k 
r- 1 

I 
r-1 r 

0 0 -k 

Now each numerator expression in  Cramer's rule wi l l  be of the form 

2 , O < i < r  Ai P + Bi P - -  

thus making each inversion of the form 

2 
Ai P + Bi P 

, O < i <  r - -  Fi( P I  s I = 
DET (A) - 

By rearranging terms, we may write the above inversion as 

0 
p(  p -COSHa ) p SlNH a 

2 p + 2 p C O S H a  + 1  
+ Di 

0 Fi( P, s )  = C. 
p2 - 2p COSH a + 1 

I 

0 0 

(111.8. 2) 
0 

I I  0 
where C., D. are i n  general functions of u (s). Inverting this expression we have for 

the Laplace transforms 
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- I  
un (s) = Ci COSH na + D. SlNH na 

0 I 0 

O < i < r  , O < n < o o  - - -  (111.8. 3) 

- i  
n 

As i n  the introductory example, we require that as n --c OD , u (s) be bounded 

in  absolute value. From this requirement we have 

Ci (uo 0 ) = - Di (uo) 0 , 0 < i < r 
- -  

0 

0 
which yields an expression for u . The final Laplace transforms are 

. 
- 1  u (5) = C. (uo) (COSH na - SINH na ) 

n I O  0 0 

(111.8. 4) 

(111.8. 5) 

We have as yet been unable to perform the Laplace inversion in general, conse- 

quently, i n  any particular problem the tmctability of  this task depends on an intelligent, 

and perhaps fortunate, arrangement of terms. This problem wi l l  receive further attention. 

Section 111. C. Higher Dimensional Models 

The method of  solving the higher dimensional models i s  an extension of a method 

developed by Ehteman and presented by Pinney. We wi l l  consider differential-difference 

equations of the form. 

- - - @ P . - 1  
I 

AP. @P. + P. + 1 
I I I 

(I1I.C. 1) 

where u.(x) are polynomials in  their arguments, and Cp , the solution, i s  a function of 

P., t. Now consider the partial differential equation. 
I 

I 
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(111.C. 2) 

The solution $ = $ (xi, t) will, i n  general, possess some arbitrary properties. Now 

i f  we let these arbitrary properties depend on the indices P, Q, r in  such a way that 

then i t  is clear that $ as a function of P., t i s  a solution of the differential-difference 

equation. The x. become arbitrary parameters, and we let them take on any particular 

values which wi!! slmp!lf;l the sc!vtlcns. 

I 

I 

As a simple example which wi l l  demonstrate the above technique, consider the 

three dimensional , semi-infinite, homogeneous cubic lattice, with harmonic nearest 

neighbor interactions, excited by a normal impuse at the center of  the surface. 

(t) , - a, < p, Q < a,, 0 < r <a, denote the displacement, i n  a 

direction normal to the surface, of the particle located at the P, Q, r lattice point. 

Let m be the mass of  the particle, k 

and k2 = m u 2  

- Let u 
P,Qtr 

be the harmonic transverse interaction, 

be the harmonic longitudinal interaction. Since the crystal i s  excited 

2 
= m u ,  1 2 

from the center, we have the symmetry relations u = u  = U  = U  
P,Q, r P,-Q,r -pfqfr -pt-Qrr* 

The equations of motion are then 

IX>< P,Q<a> 

l < r < a o  
2 

- + k  A u 
0) ' + A  2 

2 
d u  

Q I 'P,Q,r 2 r P,Q,r = k ,  [ A p  
PtQ,r m 
dt2 

2 -  - 2u. 
I 1  1+1 +'i+l I 

A . U. - U. 

-28 - 
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Now let u (t) be a function of  the fictitious variables x. , and require that 
P, Q, r I 

U m < Q < m  
- 2 2 - 

'1 " Q  P,Q,r 
a 2  U 

2 P,Q,r 
ax2 f 

1 <  r < m  - A L u  
r P,Q,r 

U - u  r = O  P,Q,1 P,Q,O 

(III.C. 5) 

Using this transformation from P,Q,r to x x the equations of motion become 1' 2'x3' 

U 
a2 + a2 3 P,Q,r = + 

a x1 a x2 
2 2 T  P,Q,r 

2 
a u  

(1II.C. 6) 
a t2 

This i s  the scalar wave equation which, on applying Huyghen's Principle, i s  seen to have 

the following general solution: 

- J f(')'(*) (I,m,n) d R 
'1,2 - P,Q,r (I1I.C. 7) 

where 

I = x, + t COS0, m = x 2  + t SIN0 COS r$ , n = + t SIN0 SIN4 x3 

(1)  (2)  
fP,Q,r fP,Q,r 

They satisfy the relations 

are the arbitrary functions which are assigned the indices P,Q,r. 
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the init ial  conditions of u (t) 
p, A, r 

U (0) = 0 
P,Q,r 

a re 
t = O  

(1II.C. 8) 

For fixed vaiues of  the x., i (1) 

Let these values be 

!2! wi i i  satisfy these same init ial conditions. 
I P,Q,r ' fP,Q,r 

x1 - - x2 - - x3 = 0 ,  i.e. 

6 s P,O Q,O r,O 
f(2) (O,O,O) = 6 
P,Q,r (1lI.C. 10) 

Since a l l  other values of the x. no longer have meaning i n  the problem, we may set 

= 0 for a l l  x.. The transformation equations from P,Q,r to x 1, x2 , x3 become P,Q,r I 

I 

f(l 1 

2 (2) 

- a > <  P <  a> a fP,Q,r - - 2 2 f(2) 
2 O 1  'P P,Q,r 

a x1 

2 
1 

0 

2 
2 

W 

- m < Q < o o  

(1II.C. 
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Now let us assume a separation of variables of the form 

With this separation, the transformation equations reduce to a set of  one dimensional 

differentia I -di fference equations, i . e. 

d2 X r )  
- - 

2 
1 dx 

- - 
2 .  

3 dx 

-a< P < a >  

(1II.C. 13) 

By applying the methods of the section on one dimensional problems, we easily obtain 

the following solutions for the above set of equations. 

2(r+l) (2 w2 x3) (X3) = JZr (2 w 2  x3) + J )((3) 
r 

(1II.C. 14) 

(X1'X2' x 3 ), putting f (2) i n  the wave equation 
P,Q,r 

Using these solutions for f (2) 
P,Q,r 

1 - x2 - x3 integral, and setting x - - = 0 ,  we have the following solution 
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211 lT 

.f s [ J2, (2w2t COSQ) + J2(r+l) (2w2 t COSQ) J 
t 

U (t) = - 
P,Q,r 4n 0 0 

x J2p (20 tS INBCOS$)  J 2 Q ( 2 ~ 1  tSIN8SIN6) S I N Q d Q d 4 .  

(1ll.C. 15) 

It i s  instructive to determine the extent to which the lattice displacements for 

the model of Kinzer and Chambers approximate those for the simple cubic lattice, 

equation (1II.C. 

t ice particle located at the origin. For the three dimensional model 

15). For simplicity we w i l l  consider only the displacement of  the lat- 

x J0(2wl t s l N Q C O S + ) J  0 (2wl tS lNQSlN+)S INQd0d+  

(1II.C. 16) 

while for the one dimensional model 

(Il1.C. 17) 

In this expression let u = 2w t COS 8 . Then we have, after some manipulation, 

TI 
(') = S[J 0 (20 t COS 8) + J2 ( 2 ~ ,  t COSQ) ] SIN8dQ 

$ 0  - = o  

(1II.C. 18) 

-2 w,kt 
41 w 1  Jo (2 w1 

and 
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s 
(3) = -.!- J [ J0(2 w 2  t COSQ) + J2(20 t COSQ) J SIN8 dQ 

0 
40 4s 

2 s  
x { J 2 w 2 J ( 2 w  

0 
0 

Now for the three dimensional mode 

t S l N 0 C O S + ) J  ( 2 w l t S l N 8 S I N + ) d +  . I 0 

(1Il.C. 19) 

let 9 = 2 w 1  and R = 2 w 2  and for the one 

dimensional model let 

expressions (1II.C. 18) and (111.C. 19). Denoting these by { 1 } and { 3 } we have 

9 = 2 w 1  . We need only compare the terms in braces i n  

( 1  1 2 s  Q, J (R1 (G2-k2) t  S1NB) e - R  lkt (1II.C. 20) 
1/2 

0 

2 s  
( 3  1 = R 2  f Jo (R3 t SIN8 COS 4 )  J ( R 3  t SIN8 SIN # )  d+ 

0 
0 (1II.C. 21) 

I f  we set S2 = R the remainder of  the expressions (111 .C. 18) and (111 .C. 19) are 2 1 
identical. Using power series expansions for small time we find 

(‘2i2 - k2)(Q1kt)(Rlt SlN8)2 (Rlkt)4 (z2 - k2)(Rlktf(Rlt SIN€I)~ 
+ ... 1 

4 +24- 8 
+ 

( R t SlN0)4 
2 

(R3tSINQ) 

4 . * -  1 - 
+4 64 

- (31 = 2 s R  I 1  - 2 

Now if we let K 0 , (1II.C. 22) becomes 

2 (G Q, t 

64 
( is Rl  t SINQ) 

* . *  I - ( 1 )  = 2 n R 1  [ l  - ---4--- + 

a# i f  we identify Ti 0 = Q 3, we find the two expressions in  sub- Since 0 ,  = Q 2, 

stantial agreement to the order of our approximations. 
1 
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Thus we see that the model of Kinzer and Chambers represents a three dimensional 

crystal quite well in the case K << 1 and may well be less unwieldy for  numerical mani- 

pulation than the three-dimensional model. 
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APPE NDI X 

Let us define the Laurent-Cauchy transform pair as 

where the functions F( p , t ) and h 

Without concerning ourselves with the general theory o f  this ttunsform, let us derive 

the following four transform pairs, which are used extensively in  this paper. 

(t) of a real variable are Laplace transformable. 
n 

P( P - COSH ao) 

p2 - 2 p COSH a + 1 
L [ COSH (a n)] = 

C 0 

0 

0 
p S l N H  a 

L [SI" (a n) l  = 
p2 - 2 p  COSH a + 1 C 0 

0 

For transform (l), we have by definition 
m 

(3) 

(4) 

-.-1] = ,,[ ? hn p-'] 
n =  1 

=P[ n = O  hn+l p 

= P  [ n = O  
h n p -n - h ]  0 = p[Lc(hn) - hO] 



Iterating the above result once, we obtain transform (2) 

Similarly, by definition, we have for transform (3) 

L C [,,,, (son)] = 

OD a n  -n 
1 

n = O  
[ e  0 + e - 0 ~ 1  P 

Or, using the well known summation 

we have 

3 1 + 1 
a -a L COSH (a n) 
0 0 

C [ o ] = : [  1 -  - e 1 - -  e 

P P 

P( P - COSH ao) 
a -a 

? - 2 p C O S H a  + 1  
0 

0 
2~ - (e 

p 

Finally we have for transform (4) 
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Or, using the same summation as above, we obtain 

I - -  
P 

I - -  
P 

0 
p SlNH a 

- - 
p2 - ~ ~ C O S H ~  + 1 

0 

The maior development of  the Laurent-Cauchy transform has been presented by 

Y. H. Ku and A. A. Wolf, Proc. Inst. Radio Engrs. 48, 923 (1960). An extensive 

table of  Laurent-Cauchy transform pairs i s  also given i n  this article. A correction to 

this article has been presented by Y. H. Ku and A. A. Wolf, Proc. Inst. Radio Engrs. 

49, 1097 (1961). Additional development of a related type o f  transform has been presented 

by E. 1.  Jury, J. Franklin Inst. 270 114 (1960). 

I 

- 
- 
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Fig. 1. Dependence of binding energy term on w. (KE = 0, Z = 0.5) 



Fig. 2. Dependence of kinetic energy term on w. (e = 0, Z = 0.5) 

s, 
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(4 
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0 

rc! 
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0 



D 40 
.- 

- 
Fig. 3. Dependence of kinetic energy term on w2. (e = 0, Z = 0.5, w = 1.0) 



- 
Fig. 4. Dependence of kinetic energy term on Z. (e  = 0, w = 1.0 ,  w2 = 1.21) 
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Fig. 5. Dependence of accommodation coefficient on w. 
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Fig. 6. Dependence of accommodation coefficient on w. 
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Fig. 7. Dependence of accommodation coefficient on K. 
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Fig. 8. Dependence of accommodation coefficient on K. 
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Fig. 9. Sketch illustrating diatomic molecule interaction. 
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Fig. 10. Dependence of diatomic accommodation coefficient on rho. 
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Fig. 11. Dependence of diatomic accommodation coefficient on rho. 
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